Día 38: Ejemplo de Gaussian

Entering Gaussian System, Link 0=g03

Initial command:

/chmsoft/g03/arch/athlonxp/l1.exe /scratch/361464.1.cci10.M/Gau-25442.inp -scrdir=/scratch/361464.1.cci10.M/

Entering Link 1 = /chmsoft/g03/arch/athlonxp/l1.exe PID= 25443.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc.

All Rights Reserved.

This is the Gaussian(R) 03 program. It is based on the

the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),

the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),

the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),

the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),

the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),

the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon

University), and the Gaussian 82(TM) system (copyright 1983,

Carnegie Mellon University). Gaussian is a federally registered

trademark of Gaussian, Inc.

This software contains proprietary and confidential information,

including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be

used, copied, transmitted, or stored only in accord with that

written license.

The following legend is applicable only to US Government

contracts under DFARS:

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the US Government is subject

to restrictions as set forth in subparagraph (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause at DFARS

252.227-7013.

Gaussian, Inc.

Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

The following legend is applicable only to US Government

contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is subject

to restrictions as set forth in subparagraph (c) of the

Commercial Computer Software - Restricted Rights clause at FAR

52.227-19.

Gaussian, Inc.

Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA

---------------------------------------------------------------

Warning -- This program may not be used in any manner that

competes with the business of Gaussian, Inc. or will provide

assistance to any competitor of Gaussian, Inc. The licensee

of this program is prohibited from giving any competitor of

Gaussian, Inc. access to this program. By using this program,

the user acknowledges that Gaussian, Inc. is engaged in the

business of creating and licensing software in the field of

computational chemistry and represents and warrants to the

licensee that it is not a competitor of Gaussian, Inc. and that

it will not use this program in any manner prohibited above.

---------------------------------------------------------------

Cite this work as:

Gaussian 03, Revision B.05,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,

K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,

V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,

K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,

V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,

O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,

J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,

I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,

C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,

Gaussian, Inc., Pittsburgh PA, 2003.

**********************************************

Gaussian 03: x86-Linux-G03RevB.05 8-Nov-2003

1-Feb-2006

**********************************************

%chk=sodio.chk

------------

#MP4/cc-pVQZ

------------

1/38=1/1;

2/17=6,18=5,40=1/2;

3/5=16,6=2,11=9,16=1,25=1,30=1/1,2,3;

4//1;

5/5=2,38=5/2;

8/6=4,9=120000,10=1/1,4;

9/5=5/13;

6/7=2,8=2,9=2,10=2/1;

99/5=1,9=1/99;

--------

EI Sodio

--------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 2

Na 0. 0. 0.

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 11 0 0.000000 0.000000 0.000000

---------------------------------------------------------------------

Stoichiometry Na(2)

Framework group OH[O(Na)]

Deg. of freedom 0

Full point group OH NOp 48

Largest Abelian subgroup D2H NOp 8

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 11 0 0.000000 0.000000 0.000000

---------------------------------------------------------------------

Standard basis: CC-pVQZ (5D, 7F)

There are 15 symmetry adapted basis functions of AG symmetry.

There are 5 symmetry adapted basis functions of B1G symmetry.

There are 5 symmetry adapted basis functions of B2G symmetry.

There are 5 symmetry adapted basis functions of B3G symmetry.

There are 2 symmetry adapted basis functions of AU symmetry.

There are 9 symmetry adapted basis functions of B1U symmetry.

There are 9 symmetry adapted basis functions of B2U symmetry.

There are 9 symmetry adapted basis functions of B3U symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

59 basis functions, 167 primitive gaussians, 74 cartesian basis functions

6 alpha electrons 5 beta electrons

nuclear repulsion energy 0.0000000000 Hartrees.

NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 Big=F

One-electron integrals computed using PRISM.

NBasis= 59 RedAO= T NBF= 15 5 5 5 2 9 9 9

NBsUse= 59 1.00D-06 NBFU= 15 5 5 5 2 9 9 9

Harris functional with IExCor= 205 diagonalized for initial guess.

ExpMin= 1.34D-02 ExpMax= 1.22D+06 ExpMxC= 5.42D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00

HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Initial guess orbital symmetries:

Alpha Orbitals:

Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G)

Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G)

(T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U)

(T2G) (T2G) (T2G) (EG) (EG) (T2U) (T2U) (T2U)

(A2U) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG)

(EG) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (T2G)

(T2G) (T2G) (EG) (EG) (A1G) (T2U) (T2U) (T2U)

(A2U) (T1U) (T1U) (T1U) (A1G)

Beta Orbitals:

Occupied (A1G) (A1G) (T1U) (T1U) (T1U)

Virtual (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U)

(T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U)

(T1U) (T2G) (T2G) (T2G) (EG) (EG) (T2U) (T2U)

(T2U) (A2U) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G)

(EG) (EG) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G)

(T2G) (T2G) (T2G) (EG) (EG) (A1G) (T2U) (T2U)

(T2U) (A2U) (T1U) (T1U) (T1U) (A1G)

The electronic state of the initial guess is 2-A1G.

<S**2> of initial guess= 0.7500

Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(UHF) = -161.858717754 A.U. after 9 cycles

Convg = 0.3755D-08 -V/T = 2.0000

S**2 = 0.7501

Annihilation of the first spin contaminant:

S**2 before annihilation 0.7501, after 0.7500

ExpMin= 1.34D-02 ExpMax= 1.22D+06 ExpMxC= 5.42D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00

HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Range of M.O.s used for correlation: 6 59

NBasis= 59 NAE= 6 NBE= 5 NFC= 5 NFV= 0

NROrb= 54 NOA= 1 NOB= 0 NVA= 53 NVB= 54

*** There is no correlation energy for this system ***

**** Warning!!: The largest alpha MO coefficient is 0.11351493D+02

**** Warning!!: The largest beta MO coefficient is 0.11331148D+02

Direct transformation and sort for antisymmetrization.

JobTyp= 1 Pass 1: I= 1 to 1.

Spin components of T(2) and E(2):

alpha-alpha T2 = 0.0000000000D+00 E2= 0.0000000000D+00

alpha-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00

beta-beta T2 = 0.0000000000D+00 E2= 0.0000000000D+00

ANorm= 0.1000000000D+01

E2= 0.0000000000D+00 EUMP2= -0.16185871775397D+03

Would need an additional 3666413 words for in-memory AO integral storage.

MP4(D)= 0.00000000D+00

MP4(S)= 0.00000000D+00

MP4(R+Q)= 0.00000000D+00

Time for triples= 0.00 seconds.

MP4(T)= 0.00000000D+00

E3= 0.00000000D+00 EUMP3= -0.16185871775D+03

E4(DQ)= 0.00000000D+00 UMP4(DQ)= -0.16185871775D+03

E4(SDQ)= 0.00000000D+00 UMP4(SDQ)= -0.16185871775D+03

E4(SDTQ)= 0.00000000D+00 UMP4(SDTQ)= -0.16185871775D+03

Largest amplitude= 0.00D+00

S**2, projected HF & approx projected MPn energies after annihilation of

unwanted spin states (see manual for definitions):

spins (S**2,0) (S**2,1) PUHF PMP2 PMP3 PMP4

annihilated

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:

Alpha Orbitals:

Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G)

Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG)

(EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U)

(EG) (T2G) (T2G) (T2G) (EG) (?A) (?A) (?A) (?A)

(?A) (?A) (A2U) (T2G) (T2G) (T2G) (EG) (EG) (T1U)

(T1U) (T1U) (?B) (?B) (?B) (?B) (T2G) (?B) (T2G)

(?B) (T2G) (?A) (?A) (?A) (A2U) (?A) (?A) (?A)

(A1G)

Beta Orbitals:

Occupied (A1G) (A1G) (T1U) (T1U) (T1U)

Virtual (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U)

(EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U)

(T1U) (EG) (EG) (T2G) (T2G) (T2G) (?A) (?A) (?A)

(?A) (?A) (?A) (A2U) (EG) (EG) (T2G) (T2G) (T2G)

(T2G) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (T2G)

(T2G) (T1U) (T1U) (T1U) (?A) (?A) (?A) (?A) (?A)

(?A) (A2U) (A1G)

The electronic state is 2-A1G.

Alpha occ. eigenvalues -- -40.47992 -2.80052 -1.51914 -1.51914 -1.51914

Alpha occ. eigenvalues -- -0.18219

Alpha virt. eigenvalues -- 0.01682 0.01682 0.01682 0.04313 0.06848

Alpha virt. eigenvalues -- 0.06848 0.06848 0.12026 0.12026 0.12026

Alpha virt. eigenvalues -- 0.12026 0.12026 0.22425 0.23755 0.23755

Alpha virt. eigenvalues -- 0.23755 0.34449 0.34449 0.34449 0.34449

Alpha virt. eigenvalues -- 0.34449 0.38422 0.38422 0.38422 0.38422

Alpha virt. eigenvalues -- 0.38422 0.38422 0.38422 0.76212 0.76212

Alpha virt. eigenvalues -- 0.76212 0.76212 0.76212 0.88808 0.88808

Alpha virt. eigenvalues -- 0.88808 0.89128 0.89128 0.89128 0.89128

Alpha virt. eigenvalues -- 0.89128 0.89128 0.89128 0.89128 0.89128

Alpha virt. eigenvalues -- 1.03075 1.03075 1.03075 1.03075 1.03075

Alpha virt. eigenvalues -- 1.03075 1.03075 1.95675

Beta occ. eigenvalues -- -40.47724 -2.79351 -1.51702 -1.51702 -1.51702

Beta virt. eigenvalues -- 0.00991 0.02682 0.02682 0.02682 0.06887

Beta virt. eigenvalues -- 0.09284 0.09284 0.09284 0.12963 0.12963

Beta virt. eigenvalues -- 0.12963 0.12963 0.12963 0.25311 0.26065

Beta virt. eigenvalues -- 0.26065 0.26065 0.35993 0.35993 0.35993

Beta virt. eigenvalues -- 0.35993 0.35993 0.39447 0.39447 0.39447

Beta virt. eigenvalues -- 0.39447 0.39447 0.39447 0.39447 0.77296

Beta virt. eigenvalues -- 0.77296 0.77296 0.77296 0.77296 0.90030

Beta virt. eigenvalues -- 0.90030 0.90030 0.90030 0.90030 0.90030

Beta virt. eigenvalues -- 0.90030 0.90030 0.90030 0.90033 0.90033

Beta virt. eigenvalues -- 0.90033 1.04084 1.04084 1.04084 1.04084

Beta virt. eigenvalues -- 1.04084 1.04084 1.04084 1.97036

Condensed to atoms (all electrons):

1

1 Na 11.000000

Mulliken atomic charges:

1

1 Na 0.000000

Sum of Mulliken charges= 0.00000

Atomic charges with hydrogens summed into heavy atoms:

1

1 Na 0.000000

Sum of Mulliken charges= 0.00000

Atomic-Atomic Spin Densities.

1

1 Na 1.000000

Mulliken atomic spin densities:

1

1 Na 1.000000

Sum of Mulliken spin densities= 1.00000

Electronic spatial extent (au): <R**2>= 27.1411

Charge= 0.0000 electrons

Dipole moment (field-independent basis, Debye):

X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000

Quadrupole moment (field-independent basis, Debye-Ang):

XX= -12.1686 YY= -12.1686 ZZ= -12.1686

XY= 0.0000 XZ= 0.0000 YZ= 0.0000

Traceless Quadrupole moment (field-independent basis, Debye-Ang):

XX= 0.0000 YY= 0.0000 ZZ= 0.0000

XY= 0.0000 XZ= 0.0000 YZ= 0.0000

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000

XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000

YYZ= 0.0000 XYZ= 0.0000

Hexadecapole moment (field-independent basis, Debye-Ang**3):

XXXX= -57.2140 YYYY= -57.2140 ZZZZ= -57.2140 XXXY= 0.0000

XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000

ZZZY= 0.0000 XXYY= -19.0713 XXZZ= -19.0713 YYZZ= -19.0713

XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000

N-N= 0.000000000000D+00 E-N=-3.897333223985D+02 KE= 1.618577422173D+02

Symmetry AG KE= 1.265036680535D+02

Symmetry B1G KE= 8.719423413543D-61

Symmetry B2G KE= 7.840156803935D-61

Symmetry B3G KE= 1.022117403238D-60

Symmetry AU KE= 2.145236951709D-62

Symmetry B1U KE= 1.178469138793D+01

Symmetry B2U KE= 1.178469138793D+01

Symmetry B3U KE= 1.178469138793D+01

1\1\GINC-CCI10\SP\UMP4SDTQ-FC\CC-pVQZ\Na1(2)\FPRA05\01-Feb-2006\0\\#MP

4/CC-PVQZ\\EI Sodio\\0,2\Na,0,0.,0.,0.\\Version=x86-Linux-G03RevB.05\S

tate=2-A1G\HF=-161.8587178\MP2=-161.8587178\MP3=-161.8587178\MP4D=-161

.8587178\MP4DQ=-161.8587178\MP4SDQ=-161.8587178\MP4SDTQ=-161.8587178\S

2=0.750056\S2-1=0.\S2A=0.75\RMSD=3.755e-09\PG=OH [O(Na1)]\\@

SEE YOU NOW,

YOUR BAIT OF FALSEHOOD TAKES THIS CARP OF TRUTH.

AND THUS DO WE OF WISDOM AND OF REACH...

BY INDIRECTIONS FIND DIRECTIONS OUT. -- HAMLET, II, 1

Job cpu time: 0 days 0 hours 0 minutes 55.2 seconds.

File lengths (MBytes): RWF= 23 Int= 0 D2E= 0 Chk= 7 Scr= 1

Normal termination of Gaussian 03 at Wed Feb 1 16:08:31 2006.

Publicado el 20 de octubre de 2005